Foreign Agricultural Service

Global Market Analysis International Production Assessment Division Web: https://ipad.fas.usda.gov

September 24, 2025

Commodity Intelligence Report

Australia: In Season Western Australia Wheat Crop Travel Summary

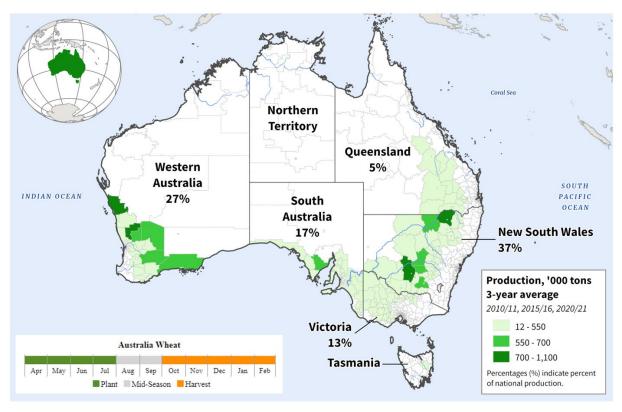
Wheat, barley and canola (rapeseed) are the predominant crops produced in Australia. Wheat is grown in Western Australia, South Australia, Victoria, New South Wales and Queensland during the winter months; planting begins in April and harvest begins in October (Figure 1).

Australian wheat is produced for Asian noodles as well as other baked products for human consumption. The varieties grown meet the high standards for the Asian noodle market. Over the past 5 years, on average, Australia has produced 33.8 million metric tons (mmt) of wheat and is the seventh highest producer (Figure 2) and the fourth highest exporter worldwide (Figure 3).

Analysts from the USDA Foreign Agricultural Service (FAS) in Washington DC, and FAS/Canberra conducted a crop assessment tour in Western Australia during the first week of August 2025. The trip included visits to farms and to a research facility where different varieties of wheat are grown under varying circumstances, such as planting dates and rotations to determine influences on yields. Early-stage crops were observed to be in good health. The route taken through Bindi Bindi, Dalwallinu and Kalannie revealed a variety of red clay versus sandy soils, and farms that receive varying amounts of annual rainfall. Despite the differences in soil and precipitation, the crops looked to be in the same growth stage and condition, and the farmers were generally positive about the crops due to the rainfall through the season thus far (Figure 4).

The crop conditions were confirmed on the Percent of Average Seasonal Greenness (PASG) product, which is an indicator of accumulated greenness, derived from the Normalized Difference Vegetation Index (NDVI). This indicator is a measure of vegetation health and productivity over a period of time, compared to a historical average. The higher values are indicative of normal or above-average vegetation conditions, and along this specific route, the values were within the above-average range (Figure 5).

The 2025 winter growing season in Western Australia began with a noticeable continuation of high temperatures and lack of precipitation during sowing as the summer ended and autumn arrived. The maximum daily temperatures reached 35 degrees Celsius, and when combined with a lack of root zone soil moisture into the middle of May, was an unfavorable start of season for some regions across the wheat belt (Figure 6). This was a concern for farmers who were ready to start planting. Many farmers in Western Australia plant their seeds into dry soils prior to forecast rain events. However, rain did in


fact arrive during the sowing period and into June and July, which allowed farmers to reap the benefits from the precipitation allowing the dry sown crops to start to germinate and emerge (Figure 7).

The result of these optimally timed rainfall events improved growing conditions and was evident in the NDVI response, which indicated above-average vegetation vigor throughout the wheat belt region of Australia (Figure 8).

Thus far this season, a combination of the NDVI and PASG indicates above-average conditions for the wheat crop during the critical development stages, leading to yield expectations towards the above-average range for the season (Figure 9). In all of the major wheat-producing areas of Australia, the NDVI is well above-average (Figure 10).

Harvest for the MY 2025/26 wheat crop begins in October 2025 and will continue through February 2026. Currently, national wheat crop area is estimated at 12.7 million hectares, producing 34.5 mmt with a yield of 2.72, which is the third highest production and yield on record.

Australia: Wheat Production

USDA

Source: Australian Bureau of Statistics, Agricultural Censuses of 2010/11, 2015/16, and 2020/21 (2021 SA2 Boundaries)

Figure 1. Wheat production map and crop calendar. Sources: Australian Bureau of Statistics, Agricultural Censuses of 2010/11, 2015/16, and 2020/21 (2021 SA2 Boundaries), FAS.

Percentage of World Wheat Production

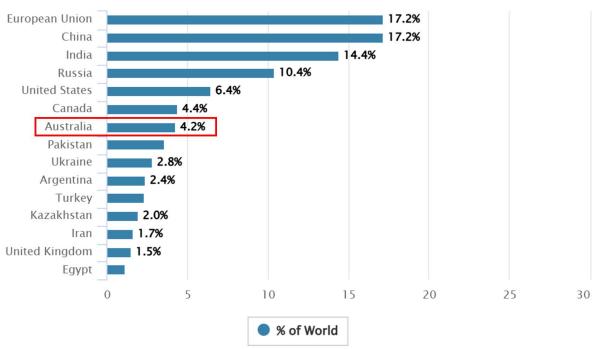


Figure 2. In 2025, Australia is the world's seventh-leading producer of wheat. Source: USDA PSD Online.

Percentage of World Wheat Exports

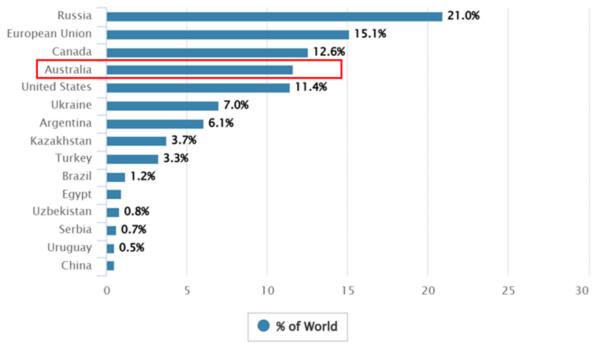


Figure 3. In 2025, Australia is the world's fourth-leading exporter of wheat. Source: USDA PSD Online.

Figure 4. Field photos taken in Western Australia. Source: FAS/Washington.

Australia: Wheat Belt PASG During Crop Travel

July 20 to August 20, 2025 (1-Month)

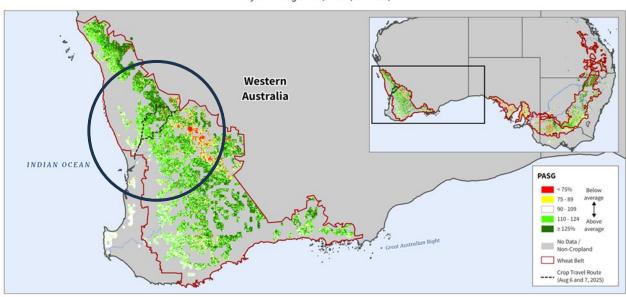
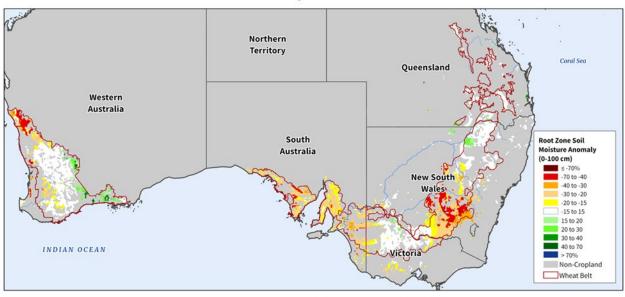



Figure 5. Crop travel route and satellite-derived Percent of Average Seasonal Greenness (PASG) analysis indicated average to above-average crop conditions. Sources: NASA MODIS Percent of Average Seasonal Greenness (1-month); IFPRI SPAM 2020 Wheat Mask.

Australia: Wheat Belt Root Zone Soil Moisture Anomaly

May 15, 2025

Sources: Soil Moisture Active Passive (SMAP) Root Zone Soil Moisture Anomaly (0-100 cm); Australian Bureau of Statistics (ABS) Statistical Area Level 2 Boundaries; IFPRI SPAM 2020 Wheat Mask

Figure 6. Root zone soil moisture anomaly on May 15, 2025. Sources: Soil Moisture Active Passive (SMAP) Root Zone Soil Moisture Anomaly (0-100 cm); Australian Bureau of Statistics (ABS) Statistical Area Level 2 Boundaries; IFPRI SPAM 202 Wheat Mask.

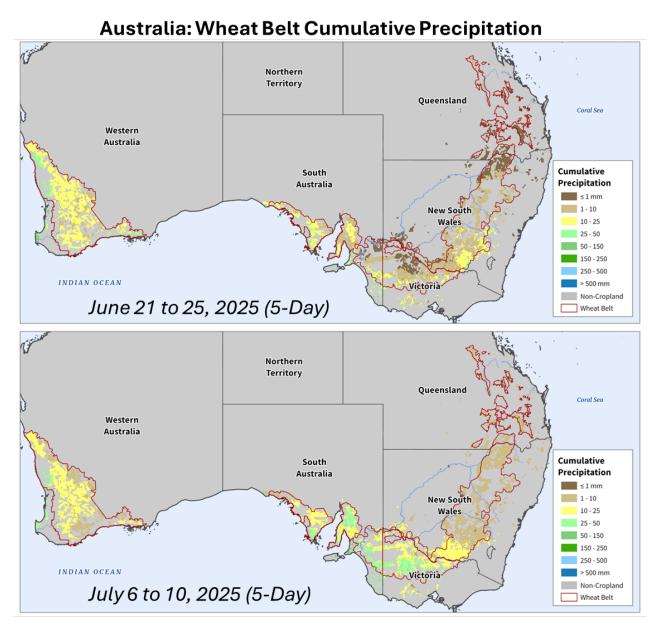


Figure 7. Australia Wheat Belt Cumulative Precipitation for events in June and July. Sources: CHIRPS Cumulative Precipitation (5-Day); Australian Bureau of Statistics (ABS) Statistical Area Level 2 Boundaries; IFPRI SPAM 2020 Wheat Mask.

Terra MODIS NDVI 8-day of Australia

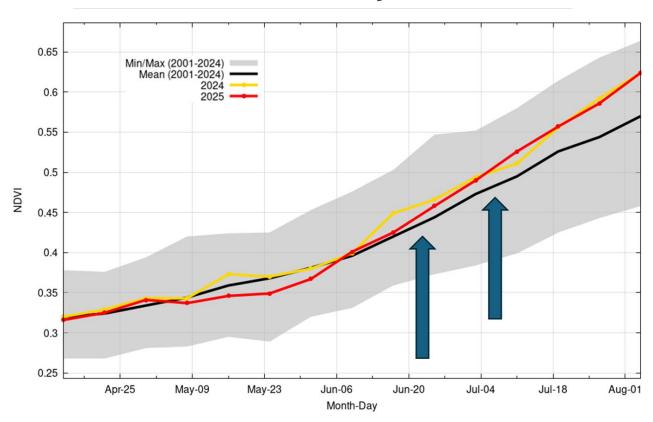
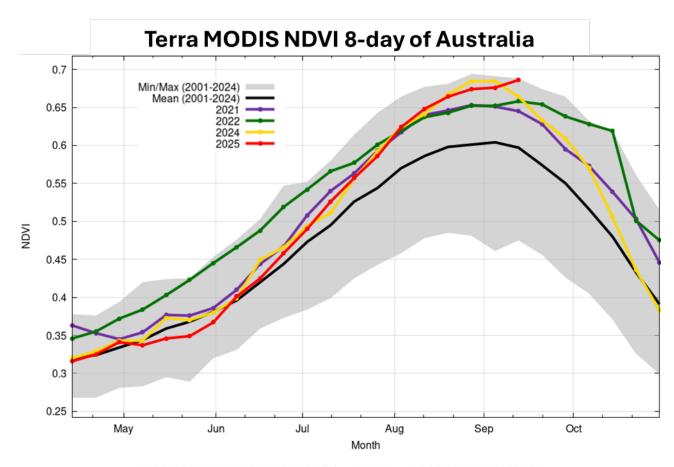



Figure 8. NDVI response verifying improving conditions due to recent precipitation. Sources: USDA & NASA Global Agricultural Monitor (GLAM), MODIS Terra 8-day NDVI; ESRI Sentinel-2 land cover crop mask 2020.

Australia: Wheat Belt Percent of Average Seasonal Greenness (PASG)

July 28 to August 28, 2025 (1-Month)

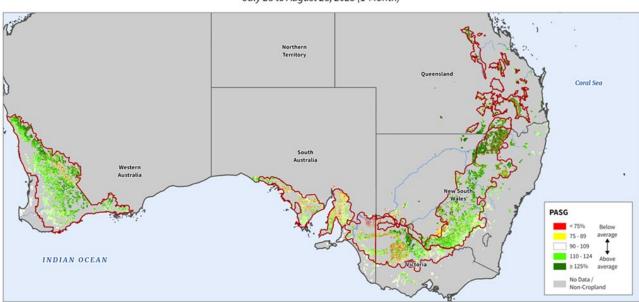


Figure 9. Above-average conditions indicated on both NDVI and PASG. Sources: USDA & NASA Global Agricultural Monitor (GLAM), MODIS Terra 8-day NDVI; ESRI Sentinel-2 land cover crop mask 2020, NASA MODIS Percent of Average Seasonal Greenness (1-month); IFPRI SPAM 2020 Wheat Mask.

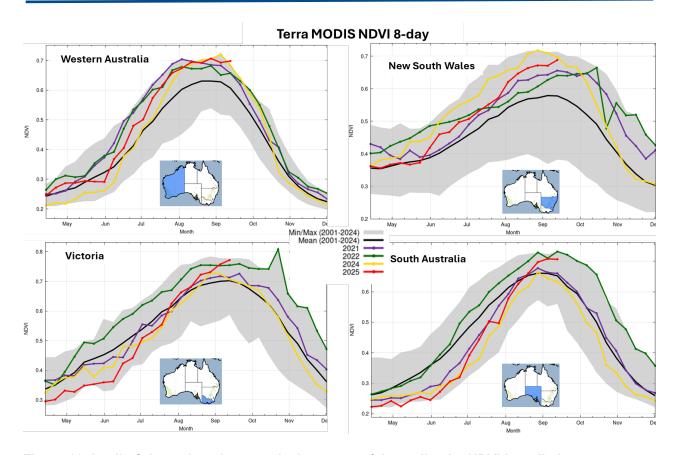


Figure 10. In all of the major wheat-producing areas of Australia, the NDVI is well above-average. Sources: USDA & NASA Global Agricultural Monitor (GLAM), MODIS Terra 8-day NDVI; ESRI Sentinel-2 land cover crop mask 2020.

The contributions of the USDA Office of Agricultural Affairs in Canberra are gratefully acknowledged.

Author contact information:

Shannon Moyo shannon.moyo@usda.gov

For more information and to access FAS databases and reports please visit:

Current World Agricultural Production Reports https://www.fas.usda.gov/data/world-agricultural-production

Production, Supply and Distribution Database (PSD Online) https://apps.fas.usda.gov/psdonline/app/index.html#/app/home

Global Agricultural Information Network (Agricultural Attaché Reports) https://www.fas.usda.gov/databases/global-agricultural-information-network-gain

Crop Explorer

https://ipad.fas.usda.gov/cropexplorer/

Global Agricultural and Disaster Assessment System (GADAS) https://geo.fas.usda.gov/GADAS/index.html