

Vegetation Water Content using AWiFS Shortwave Infrared Band

Hydrology & Remote Sensing Lab Beltsville, Maryland, USA

Dr. E. Raymond Hunt, Jr. USDA/ARS – Beltsville, MD

Thanks to: Tugrul Yilmaz John Qu

Tom Jackson Craig Daughtry

Hydrology & Remote Sensing Lab Beltsville, Maryland, USA

Susan L. Ustin David Riaño

Vern Vanderbilt

Goals for a Canopy Water Content Data Product

- Vegetation water stress/drought detection
- Potential for wildfires/vegetation dryness
- Improve estimates of soil moisture from microwave radiometers

Algorithm should be compatible with other sensors (MODIS, VIIRS)

Remotely sensed indices for canopy water content:

NDII: Normalized Difference Infrared Index (Hardisky et al. 1983) defined with AWiFS bands

NDII = (R4 - R5)/(R4 + R5)

NDWI: Normalized Difference Water Index (Gao 1996) MODIS Bands 2 and 5

NDWI = (R850 - R1240)/(R850 + R1240)

No equivalent to MODIS band 5 on AWiFS

Canopy Water Content (kg m⁻² or mm)

- Leaf EWT = (FWT DWT) / leaf area
- Canopy water content = Leaf EWT x Leaf Area Index
- Estimated by SWIR reflectance (Hunt & Rock, 1989)

Vegetation Water Content (VWC, kg m⁻²)

- VWC = Stem water content + Canopy water content
- Estimated by Active or Passive Microwaves

Physiological Status to Remote Sensing

EWT: Leaf equivalent water thickness (volume/area in mm or kg m⁻²) from Beer-Lambert Law

RWC: Relative Water Content (volume/volume at full turgor)

or EWT/EWT full turgor

Plant water stress:

- Leaves wilting, leaf rolling or loss of leaves and leads to reduced growth
- Relative Water Content (RWC, %) falls below 75-85%
- Need estimates of leaf EWT and leaf EWT at full turgor
- Problem is canopy water content also depends on leaf area index
- NDVI and NDII are highly correlated, first principal component is LAI, is second principal component leaf EWT?

Two Major Remote Sensing Campaigns

Soil Moisture Experiment 2005 and Polarimetry Land Experiment (SMEX05/POLEX)

June 11 2004

July 29 2004

Day of 2005

Canopy Water Content – All studies

Statistical relationships between NDII and canopy water content need basis for scaling up leaf to canopy reflectances

Allometric relationships may be used to relate Canopy Water Content to total Vegetation Water Content (VWC = stems + leaves)

Stem Water Volume = α (Leaf Water Volume)^{β}

Separate relationships by land cover class

SMEX05 – Iowa Total VWC as a function of NDII and land-cover class

Land cover from USDA – NASS AWiFS: July 18, 2005

Useful for microwave remote sensing of soil moisture

Soil Moisture Active Passive (SMAP) Mission

This SMAP, not this SMAP

Conclusions

- NDII using AWiFS band 5 (SWIR:1.55-1.70 µm) or MODIS band 6 (SWIR: 1.63-1.65 µm) estimates canopy water content independent of land-cover class
- AWiFS and other sensors can use NDII to produce maps of vegetation water content for input into microwave soil moisture algorithms, but total vegetation water content requires an allometric relationship between CWC and VWC
- Estimation of plant water stress is problematic at this time because NDII is very highly correlated to leaf area index

Thank you very much

